* . the dgreement was very sensitive to the edge condltmns
“same vein, Forsberg {3] has ‘amphasized the care that'is needed in’;
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On Inextehsﬁﬁ’cl Wﬁratlons of Thm Shells

E. W. ROSS, Ji’.'
: : Mathematician;.
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“modes are derived systematically under.a variety of edge conditions.

In this paper the nansymmemc free elastic mbmtwns of thm dvmes of revolui.wn are
- studied. It is assumed fhat e Srequency is low, The asymplotic approximations
. presiously given by the wriler arve used to estimaie the general solution to the shell vibra--

Approximations for the low natiril frequencies and’
Low: ndtural .

- frequéncies are found only when the edge conditions impose no forces langent fo the

When the edge is free (and only then) Rayleigh's inextensional fre—

- quencies are recovered.  For certain other edge conditions, new ndtural frequencies are.
 found that are above Rayleigh's Frequencies but still low compared, e.g., with the lowest
“membrane frequency. The displuocement modes associated with these new - frequencies

The general resulls ave applied to estimate tkese new .

that the mode s inextensional. Rather, we merely. assume that

Natick, Mass. . W tion equations at low frequencies.
- shell surface.
‘are mostly of inextensional Lype..
Frequencies for spherical domes.
!ntraductlun

TE‘E INFXTENSIONAL vxbratxons of thm she]ls were
ﬁrst studled by Lord Raylelgh [1],* and since that time his pro-

~ cedure has often been used to estimate natural frequencies for
. various shell shapes. .. The frequencies. obtained by this procedure

‘are much lower (for a thin shell} than those predicted by any

other method and-are therefore of great practical interest. For’
example, a recent paper by Cloodier and Melvor [2] shows the. .
important part played by the 1nextens;onal modes in the tranment :

response of ‘an elastic’ cylindrical shell; .
~ Despite the importanice of Raylergh’s procedure, there is good
reason for skepticism about its generality, For example, Love

_ [4] has'shown that the modes in general satisfy neither the motion |

equations fior: (with: a few exceptions) the edge conditions.

Arnold and Warburton- [5] observed {hat Raylelgh's procedure.

‘gave good dgreement. with' experiments. in some cases, but that

choosing the boundary conditions for an: a,pproxxma.te ‘analysis, -

The present mvebtlgatmn is an attempt {0 cla,nfy this sﬂ;uatmn-
- by ‘studying how the mext\nsteml mpdes’ may be derived from
© the general shell theory We do not a.ssume (as is usually done) :

i Numbers in brackets demgnate References at end of paper
. Contributed : by the Apphed Mechanics Division for publication
* {without presentation) in the JOURNAL 0¥ APPLIED MECHANICS, =
- Discussion of this paper should be addressed to the Editorial De-
© partment, ASME, United Engineering Center, 345 East 47th Street,
New York, N, Y, 10017, and will be accepted until October 20, 1963.

Discussion received after the closing date will be returned. = Manu-.
seript received by ABME Applied Mechanies Division, September 20; -

1967; final draft, February 16, 1968. Taper No, 68—APM-R..

- in [3-5].

In the

the frequency is low (in a sense that will later be made more pre--

" cise) and - derive inextensions]l modes from the general she}l‘
- theory. - This ehange of procedure is important for two reasons. o

First, we find that inextensional modes can be derived only for '
certain edge conditions, and this sheds light on the questions raised

all low frequ_encz&s,_wherea,s_ Rayleigh’s procedure 1s. limited to"

‘frequéncies for which the modal bending energy greatiy exceeds. .

the madal stretching energy. For certain edge conditions, we'shall

- find: inextensional. modes with frequenclas different from- those:

obtamed by Raylelgh .
To demonstrate the proceduxe i a context general enough to bé
convineing but simple enough to avoid unessential manipulations,

" we consider s general dome of revolution executing smiall, non-.
. gymmetric vibrations: - We shall ise the approximations obtained.

by the author. [6] to° write down an approximate general solution- )
of the différential. equation system when the frequency is low:
This soliution’is substituted into the boundary conditions, the =

-resulting frequency’ determinant is solved, and: thie ratios of the -

arbitrary constants are found.. This entire: process is carried
through for four different edge conditions, starting with a free

‘edgeand proceeding at each stage to the “Ifeest”. of the remaining :
" edge conditions.
- eondition until we exhaust all edge conditions for Whrch 10w fre-'

- quencies can be found.

The frequency increases with each new edge

For the two freest edge condltlons this procedure gives com--

' plete estimates: of the mode but only an order-of-magnitude esti-
. mate of the frequency. To find frequency estimates we: Use

Rayleigh’s prineiple for these cases. In the other two. cases,

-explicit estimates are found. for the inextensional frequencies.:

Numenclature
For most of the qua,ntltles defined be— i

are defined or first odeur.

_ L D o= dw/de, (12)
' low, we list the equations in which they " F = Young’s modulus-
: E o ES, EE = kinetic, stretehing, and
"+ bending energies, (13)

‘and  torsional turva-
{ure changes, (3_)

Ls; g = combinations " of . direct -

Second, the new procedure leaves the way open to find ..

A1, Ay _ -arbitrary. -eons'ta,nts ; Jin : stresses ‘arising in oer-

.o Agf "7 general " solution,  (14) . v f(o’) = cot p/rg (10). fai 4 g34 nid

S .. and (16). - GG, G, = coefficient functions. in g;n modes, ( ) an

@, a* = ‘angle function in asymp-= ~ . asymptotic approxima- R ( ) _—

' totie  approximations, tions, {16} - M) -=' iesc s, (10)
T ¢ 1) B o \. H = coefficient  function in m = clrcumferéntlal " wave
. By By wmodified- arbitrary eon- ' asymptotic approxima- . number ' .

By, BJf - stants in general solu- ' tion, (16)° : T - w

. “tion : : _ h = shell thickness, assumed Mgy Thggs mxg& d.tmensmnless - méridio--
b, bg:’ meridional- and circum- " = . constant ' nal, circumferential,. .

B - . ferential rotations, (2} R K = B /10 (13) _ o ‘and. tw1st1ng moments, :
c{a), ¢(a*) = abbreviations for cos (a), e Ko, kog = dimensionless”  meridio- (5)~ )

cos (a*), (16)
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nal, ecircumferential,
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The generai formulas are apphedt,o aspherxcal dome, and numen—_. '(1 — py- {n88 -1 + ngs‘rg i; o ' PR .
cal results-are obta.med for t.he prewously u.n.k:nown mexten—. = L Qe e2{q +fq + qu} o 0 (9).

sional frequencws PR
: where the various defmltlons are glven in the Nomenclature and

Funﬁamental Equatmns and Snlutwns LT g = GRG/BY R
“We shall adopt as our starting pomt the equa,tmns of thm- Lomo i :
sheﬂ theory ‘propounded by Sanders: [7]> and-modified by the .~ h2/ HZREG B Vﬂ)z << 1 RIS (10)."_

_ inelusion of ‘translational (but not.rotational) 1nert1a We may - f(o')
. write the system in dlmenswnless form as in' [6]. o

I

52

' cotd), M(er)-— mre ‘-cscd:

n;

The bmmdary cond.mons at an edge have been given -by

5 Yie =1 u' + wr, 7 'Yee = uf + ‘-'JM + ’w"'e .. (1) . Sa.nders [7] and consn;st ofprescnbmg _ :
o ‘Ysﬂ= (1/2)(?) = uﬂf = 'uf) o _' : R '_ : Z_ Lo g orw - ., PR
: e _'b's':_—w + ury” ba = UTg 1 + ‘wﬂf 2y : : ng Orv B .
kg “_‘bs: : kae—fb +Mbe e R NI Q or '’ s )
bo= G/ —AB— Py @ Cwewn
' (1/2)(@"1 S Cl u‘f.+ uM}.}_.- Chere S
o 'Y-rs + LT Tbea = 765 + V'Yss .. @ SR Ny = sﬂ + 69'(1/2)(1 - 1,2)(31,&—1 i ?.3—1),msﬂ . i
G ( 1’)'}’@3 o ST s Q, = ga + Mma& Sy
(1—v)kss ' ol
. _ i SR | The prmmple of conservatlon of energy for the v:bratmg sheil :
qs = mss + f(7nss - mﬂﬂ) + Mmsﬂ RN sta.fﬂs tha.t. : S o B

L(8) T
(@ B ES_-—;_EB;O' Ry

L flﬂ= maﬂ + mesﬂ = Mmﬁ‘\?

" The mnmon equa.tlons are. . o : where e : e AR R T
(1 - pry-1 [nsa 2, n;ﬁ) + Mﬂse} + Qzu SR By = Of(ut + 92 + w’)rg sin’ ¢>da '= QEK ORI
I : + E”{q;a“‘ 1 {1/2)Mmse(r ‘_1 = 'r' “'1)}"_'='-0 : (7)_ : Es f—fn.l_'“ Vz)"f(ﬂ'.“’lﬂ,,s + nna'Yae + 21139%9)?‘9 sin ¢d0 - (1:3_’)_‘
...:(1 = vz)'l{nsa -%— mee - Mnae} + Wv PN By é.f(m skx: + magkiap. 4 2mse7€so)"‘e sin- ‘MO’ T
A elam o+ 07 ?’:_I)Mss] p=0 e

.”

(8Y and the mtegrais are extended over a memdia e
' .—'—-—-Nomenslatﬁre - . — ;
e '.._N&'E_ = mod}ﬁed d.lmenslonless .s_'('a)', s(a*) = abbreviat)ons for “8in’ a L _...__._'ralmeter, (h/R)[12{1 o
" - ghear stress. arising fn . Cosinakp (IB) Lo b SN L
‘houndaty condluons, L, w_-_'=.'d1men51omess Cpieridion s U s r&pidly vamymg funcmon,
Lo R (11) and (12) - Gt owoeie Conaly o cireumferential, ot L (31):
o Mg Tiges Mg ™ dimensionless mendlo- L e T and normal” (eutward)- - T = funﬂﬁl()ﬂﬁ ansmg fmm
) e ;-nal, cucumfelentm,l FR R T T __d1sp1aceme_nte @y e s hlgher—order terms in o
and - shearing. direct . . Xy X)) RO _: R T N S asymwiptotie 's;pproxi— R
. stresses, (4) . il '. X.s.i, Xz o : I T fnations S :
N, e nee(‘) _. contribution of. bendmg X Xis, _-_-%'elements of frequency de—. = c]rcumferentlal angie .
Ol 3_- terms to directrstresses. . - X4 Moy | i termmant SR R TR o Ale)= d:c/da', (18). :
© of . inextensional '301(1— T Xl T RN A= €V la,rge pa,rameter,.
tion * S — RO ' (15) .
B o :c(cr) = rapidly chaugmg funo— ) :
N(ﬂ)’nﬂe(((li)z)} = eontatbition “of nertia " tion arising in asymp- RS Poissor ratio; (4) and By
L T : bern‘ls to dlr.ect stresses . - S . : totic - a.pproxlma.tlons o Ll p = masg denslt,y of She]l mam-
: zf inextensional solu=" - : "0 v U (15) and (17). TS ~teérial, (10) S
oo uon . L g @ g, i5 Loo@= dlmens:on}(ﬁs meridmnai
N = (@ WO rgt tem 2 = n @ A ng™, (45) SRR
g™y fhg ™ = gy Jroh g fred re— C o dun, ) Factors in expresslons for L nvare Iength :
e . spectlveljy’ : : - L e = helt ed '
: . 1, 21V . inextensional . frequen- o = a's.ts ell e ge o
- Q:.= modified meridional shear - s : - : )
R i S Cocles; (27),_ (33),_ _and_ Ll gy = angle, betweén  axis of
forcé drising in bound- L . . SR
: : Y L S 3By RN revoluhon a.nd “shell
ary COIldltLODS, (_11) ST :
and (12) - PB= constant in- determma— e normal . o
oG8 = dlmensmnless mer1d10nal o L t1:)n of mode, {28) e g oy = Qb(du)__-- o
. and cireurnferential Y o= /2 6y oon “%(g) = furictions- . occurring .1n 77
shear forces, (11) and Yoo Yoo, Yeb = merzdlonal cu*cumferen—_ oo el o modes, {30), (32), (34}
a2y ST o S tal and shear strams, s and (36) ;
"R ="characteristic rafhus of o @ o e ks 'dlmensmnless : 011"0112341" '
_ airvature, (10) - ¢ ' Ao} = f_unctlon arising in evalu— R f_l'eqUEIlcyl {10)
F,, vy = diménsionless - principal.. . [ . atiomof By i L.t o= cireular frequéncy °
: radii of curvature, )y . - e = small dimensmnléé;s R F—“_' d( )/do'
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s which we Henceforth é.s's'u'me to.be true.?-

: The ‘classical shell theory embodied in {i ).;(9.) n‘e'gle.ct.s' effe.ét:é. -
" from the apex of the dome.’

- 6f transverse shear, thickness change, and rotational inertia. and
- therefore can treat-aceurately only wa.velengths much greater
. than the shell TthkIlEbS, Whlch 1mphes o

Inie << 1.

. This diﬂérenﬁz_ﬂ et';uaﬁibn'system_ is ﬁneei?, of eighth drder,'aﬁd’ has
. singulatities where sin ¢ = .0. We assume that sin ¢ = 0 at, and: .

only at the axis; and that the apex of the dome i of second de-
gree.
here.
- 18] but now va.hd only when

; mﬂe << 1

the solutions usuaHy vary rapidly with 4. (i.e., alorig 2 meridian)
- and are ealled bending sclutions, and four vary much more slowly

and are called membrane. of inextensional solutions. . Two solu-: -

tions of each type are singular :Ei_t_the dome apex, where sin ¢ = 0.
We_shall_'no'wxliét the app'roXimatioris 1o the four bending solu-

.7 tions; fitst neai sin ¢ = 0, then for sin ¢ 5 0.. The latter sre.
- linear- combma.tlons of the a.pproxnnat.lons obtamed in. [6] for ﬁhe'_ :

case 9?‘3 <1y
For sin ¢ ™ 0

_ -w o~ Al ber (a;) + Az be1 (:c)

; ) + Az ker (a:} + A,; kel (x} (14)
&= (1 L 92)‘/0@

. Forsmq&;éﬂ

X e e—‘f’z > 1

w {Ale c(a) + AgeTs(a) + A~ "fc(a*)

Mgy |~ H G RN . *
| b M = A To(a)

Ty | A".—IH b {A;e“fs(a*) - Aze’fc(a*) _

.9 _ i MG, + Aa?l'e "’s(a) + Am’e ’Yc(a,}}
LA a6y
K AH[ I ]{Amc(a*) ¥ Ashsa)
| m. | _7 (1 - )M Aqme 7c(a)+A41re VS(a)}
| ;)n R Zf_‘MG {— m"fs(a) + Aze*c(a)

. m“ ’“A”H :_'y F Agre™ Ys(a*)
q:q T I T S + Aare™ "’c(a*)}
' ~ where the A s are arbltrary constanta a.nd _
zE?\f = (r 3 92)‘/«15 an. -
tr'=0 i )
A== dzfdo = )x(r.fz_ - 92\‘/* > 1 (18}

= 1{1 — 02 ‘/‘(2=rrra sin ¢)~ ‘f’m“a = m)—’/s

7—2—‘/% a= 7 — (7r/8) &+ (1/2)'m1r, :
. o - a*$a+(1/4)7r
'c(é) = cos &, o --.'s{aj ==
c(a*)."E cos a* é(&*) == gin a* S _
S G' .E'.T ;1'_'_"_ W‘f‘r ) 'GR_E'(I = vz)ré—lr
G-——(2+p)rﬁ ' A e

' cedmg one, .
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“ with terms that are 0(1).
the errots' in: the spproximations (14) and (16).are all O(A 1),

The aﬂ&lySIS depemis on. apprommatlons to the elght soiutwns' k
- of this'system which are deseribed in [6] and: will be summarized -
The &ssentaa,l step is’ an asymptotic analysis very simildr =~ -
to the one given earlier by the writer for the axzsymmetr:lc case = :

It is found that four of

which we mean

*‘rease in size under d:ﬂ’erentla.tlon .
1 ihe inertia. terms in (7 )—{9) are negligible’ accordmg to our
sy
o 5w statie ones. o
co I estlmatmg the mextensmnal soiutmns ‘when Qz < 0(7\ ‘) we -

o are guided by the static case (see Love’ 4] The displacements;”
. are obtained by solving (1) with ¥, = Y. = 7y = 0,'and all the.
S other variables except n,,, 75,

2 (8), and (6): These variables are all of the same order, say, 0(1),

" end are exactly the furictions obtained ini thestatic case. - To esti-
. ‘moate the small direct stresses we solve the motion equations, (7)-

:(9),.85 a system of three linear, nonhomogeneous equations for.
" Togii Ry aps takmg ‘the bendmg and . inertia- terms as already =

Jmown. - This gives thi same results as-in the static-case except
for. a.ddlf:zonal ferims.- -arising. from_ the inertia terms in' (7)=(9),
‘1.6, the two mextensmnal solutzons for the d;rect stresses may be -

“all0(1) in general. -
-Tiates of ‘the inertis contribtitions to the d.lrect stresses are very .
' 1mportant to our developmient. : !

? Note t.hat this is 2 more strmgent mequaht.y on' m than the pre—-

In deriving these formulas we have assumed that ¢ is measured -

_Also, R-is chosen as’ the common

value of the prineipal radii- of curvature at the. apex.” Then

: 7,{0) = rg(0) =1 and the definition of T for sin ¢ >~ 0isacon-:
. finuation of that for sin-¢¢ = 0. n

In ‘general, we shall neglect terms that are 0(?\_1) compared— :
. The asymptotic analysis shows: that :

and we shall' neglect them henceforth. - Mareover, if we expand :

‘these swpproximations in powers of 022, we. see that the static -
'asymptotw a,ppromma.tzons (the edge—effect’f appr_ommatmns);- L
-are obtained When Ce e

’szﬂ <f-oo\_—'s).-' .

The a.ppromma.tlons for the remammg four solutions are a,iso' o
descrlbed in' [6]. 'These are all membraneé solutions’ when {22 ds -/
not small but, as 0 0, they must separate into two pairs of’

‘solutions; one pair (labeled 5 and 6). that approach the two static
. membrane solutions, and another pair- (labeled 7 and 8) that ap-
“proach the two appromma,tely inextensional, static solutions. To

be moré precise, We now assunie tha.t the frequency is low, by-_

Q" < 0()\ “)

i The solutions 5 and 6 the membrane solutlons, ‘are found in "

. .'genera.l by solving the system_ {(1)-(9) with € set to zero in @)
©(9): - When 22 < (1), all the dimensionless variables assocated ™

“1.¢., the variables do not in-
- Hence; when €22 "< 0(A™1),

with these two:solutions-are 0(1);

criterion,; and the membrane solutlons are apprommately Just the

Ty are_then found from (2), (8), _'

: Wntten

T m; T ?g_ e
7T A7 ™ - elngg,©

ansm(m + &, GT(E)

T 92”’855(9) + Eznxs& €) .- :
o Ay | gk Ezneas (20).-
Qﬂns&‘sm} + Eznsas ’

Mg

where the- fun(,tlons multlplymg 62 give t.he sta,tlc bendmg con-

tribution and the functions multiplying: ? give the contributiori .-
of the inertia terms. The functions nm(ﬂ) FoA 7(*) n, Bsm') are
‘Tt will eventua.]ly be seen i,ha.t, these est:— N

- Of the ezght soldtioils, four aré smgular at (;b =0 a.nd must be.
d:scarded for.a dome. - We may take two of these as the memi- -

" brane-solution numbered 6 and the inexténsional solution num- - :
- bered 8, and we seé from {14) that the remaining two are the. -

bending solutlons numbere(i 3 and 4. Thus we must take -
As“— A4—A5—As—0 (21) )

We nay now mthout confusion set

T —— Vo e =, O

 Transactions :nf_ the 'AS'ZM'_E __ '




E 'sirid siﬂﬁlarly, for ngg and ng.
may finally be wr1f;ten )
w =~ Hev{Aw(a) -+ A,,s(a)} + Adwot® + A
Cw o~ ATIGHeY| - Als(a*) 4+ Ascla®)} -
T L : o A+ A
~ A—eMG‘,Ha{A;s(@) @) + A0 + Ap
by > AHeY[ = As(a®) — Aw(@®)} + AD® + ADD
by ~ MHe{Awela) + As(a)} + Achy'® < Adby®
m,, o~ AeHer{Axs(a) — Aw(@)} + Aim, O 4 Agn @
© gy 'A%HeT{Als(a.) - Agc(a)} + Asmaa{ﬁl + Aqmﬂgm_ _
g o AM(l - v)HeT{AIc(a,*) + Ags(a*)}

. | .. SR : + A5m”8(5) +A7m5(73
g e A At A@®)] + Ag. 5 4 g
. 49 ™~ AEMHe'Y{ —Ais(a) + Azc(a,}} -i— Aﬁgs(ﬂ + A-,-q'g('r).. :

g~ AVYG, He"’{Als(a*} - A,,c(a*)}
' A, ® AT[%“@ + A=tn,, (9}

<

ngy = G HeT{ ela) + Azs{a)} .

L A Ay + AT{Q%aa(m + )\ ‘ﬂsa&)}
-n;,, ~ AAIMG HeV{Als(a*) - Azc(a,*)} + Ao _

o | o A @@ N, @)

" These apprommatlons are accurate when 02 < O(A-1); m > 2
 andsin ¢ # 0. When £2 < 0(A2), all the yusntities are approxi-
. -mately static (independent of {2) except the direct gtresses of the -
These formulas form. the-basis for our-. .

_ ‘inextensional solution.
. analysxs oflow frequenmes and mod%

" Calculation of Low !-'r'equam:ies a'nt[_'Mndeé_- |

Tn this section we shall put the general solution (22) into various -

sets of edge conditions and calewdate the natural modes and fre-

‘quencies. The derivation: will be carried cut in detail for two’
cases but results will be given for the rest. We shall begin with |

the. case of a completely free edge and then consider successively

- “'tighter’ sets of edge conditions until the frequency is increased.

above the range, 2 < 0(A~1), in which (22} is spplicable.. - :
- We assume the edge is at ¢ = oy and sin ¢{eg) # 0. A new
set of eonstants, Bj,, =125 7 is introduced, defined by

B = 1H(0’o)37(“°) By = AgH(gp)eV(e.
B = Ay B = A7,
' and We. alsoset . ol
X—‘nsﬁ Ay, © = A, ™

An ) = A"”fe'"z"»se(‘.) =AM
In deducing the natural fréquency and evaluating the constants
It is to be understood that all quantttles are evaiua.ted at o = oy,

‘Case (I): Free Edge. ng = Ny = @; = my = Oal 0 = .. 'The
Eour conditions are (keeping the Ieadmg terms only).
R {fG’ s(a*) - BATG, c{a*) + Bmﬂ(-") B _
_ _ + B—,{ Qmmm) 4 A-m 00} =0 (23)-
Ny = BIA-IMG;S(&,*) — BAIMG.o(0*) £ Bng®
_ + Bi{ Qg @ 4 A=tn g + gmy i} = 0 (24)
Q, = BM%mﬂ-EA%Mﬂ4<&MﬁL+Mm¢W Ca
+ Bila.® + Mm@} = 0 (25)

Juumal nt Applletl Mecham{:s

Thé a’pproximaté genersal solution :

Where e

. Xe = nsets} - nsaw)(M/f),

(22> '

Mgy = B1A28{a) — BgA_zc(a) + Bmss(s) + BTmH(T) — 0 (26)
Where N . o i :
| g= (1/2)7‘3 2(1 - Vz)(g?‘gn.l = 1-8 }

If we ehmmate Bj {sing the condltlon (23), we obtain a thre&
squa.re system that can be written in matrix Eorm

T "X (92X13 + A 4Xt4) BzA_2
a1 . . X22 (QFXM + A 4X14) : Bs [0] .
9—1/z XpA-l (QEA—IX%_'_i_ A‘4X34}_ By D

X”' = _nsstﬁ)/(fc'l)s

T o X = —.Xﬁé(a) _
X = me(‘“' - ns,f“’fM/f), X Fj'—nnfﬂ)/gc; SR
_ . _' B Xa —-_—Xﬁs(a)_
X = g g —nas"’(M/f) I
_Xﬁ = {n & )/f@ } qm + Mm, 5(1)
X:s?'=:- —m, ms(a*) ' '

" When' 31 is ehmmated the lea,d.mg terms in the coeﬂ‘.iczents of By

caneel in equations (24) and (25). The dominant terms in these

- coefficients then. arise from. later terms.in the asymptotic ex-. -

pansions of n,, 9, and g, for the bending solutions.. These are
not known explicitly; but we know their orders of magnitude
and designate the unknown functmns M and oty both of Whlch-
are 0(1). '

The frequency is found by annu]hng the deter:mnant of thJs -
system, with the restlt :

X14X22 - X12X24 42 /2(‘0»1X12 - 7]11X22)X84

: 92A4= : = o?

KXoy — XlaX-»g .
_ . . . @
The ratios of the coef‘ﬁcmnts aré found to be : '
' Bi/By = A=22Vn, De(a*)
By/B; = _921/’171. ‘7]s(a*) (28)
Bi/Br = Ao '

where ,85 = 0(1) is a constant.

The denominator in fhe frequency conchtlon (27) 8-
X]ngs —'XJ;,\ng_ = M, (E)n 9(9) - n 5(5)?1 (9)

and cannot vanish beeause the dlrect'stresses assoelated with the .

membrane and inextensional solutions must be linearly inde- . -

pendent. Thus, in the range 02 < O(N71), theé frequeticy condi-
tion ean be satisfied only when -

Qe aAe
Since A =~ hy—"/* whenever (22 < O(A™1), we find that there is
only one natural frequency for each m > 2 in the range 02 <
0(e*/), and it is gzven by

Q e dlerg(a'o). (29)

We cannot determine oy and (35 because we. do not know 5y

" and 7m, which are.found from the second terms in the asymptotie
- expansions of n,,, .9, and ¢,.

. Hence (29) is not of ruch practlcal
value in calculating the frequency.

However, & first approximation to the mode is compietely de-
termined by the coefficients obtained in (28), even though we do
not know (35 premsely o S

SEPTEMBER 1968 / 5|§



w ~ u(a), ] o

v e o),

by = by (@)

EN S (@) |
[mes] x[ ]Sm {§’ R (7r/4)} l:maa(”(cf)] :

. me"_vm,,(")(cr)

e {g),

b, ~B,0(0),

(30)
~ A{cr) p sin _(’ D
gé ~ -xM(cr) e {_{' = (7r/4)} + qam(tf)

ERes #e)
[ se] =4 (")"G“(”) [M( )

?T,gﬂ i~ A 2(a')xG {cr) 008 {y — (1r/4:)}

Smf

/s He). { Al)
H(Uu) Alwa)

VA RiICORY ‘{siﬂ PNk
? { ""a(ﬂ'} }: sint §(a) ??_n (7){0-0)

} !-mssﬁ) (0'0)

.Il' L

o 2“%—%) _~2f‘/*>_~:f ?] {f‘e(a’)}_‘ﬁdo’

Iiis noteworthy that ail the qua,ntltles occurrmg in these formulas- :
The dis-"
L pEa.cements and rotations are dominated by the: inextensional:

- golution; the membrane solution ' is” entirely negligible, and: the .
- bending (edge-effect) solutions have a strong inflienice on the .. - .
strésslike quantities, malking p0531ble the satr.sfactlon of a]l EE

- for the mode are static and relatively easy to evaluate..

" boundary conditions.

- Although this procedure ha.s ywlded only an order—of—magmtude _: '

: "'estlmate for the frequency; it has ‘delivered an estimate of the

mode that is both more general and more oomplete than any pre—--- -
.. viously known.- .

Cose (I}:  ng = Ny = Qs'

- shall merely record the results.’
! the range @ <0 for ea,ch m =2, namer,

Q ’Va’n!\. /2"“’ czn{erg(ao)} /‘ .- L

g, = 0(1) cannot be found exphcutly because of canceﬂa,tlon of-'_ :. _
" the leading terms, as was true of ar. A eompiete first appromma,- L

* “tion for the mode is found o
S v 'w("')(cr}, : u ~ um(a)

) ) o~ bﬂm(o-)

v g‘vm'(a) .

b, czx 08 §‘ —1— b (7)(0')

[ ] = —A(G)x[ ]sm {é‘ - (vr/4)}
Mg
Mg =2 —(1 - ¥)M(o)x cos §' + mB(T)(g)

) g; o -mAZ(a')x sin §'
~ A(o‘)ﬂl(d)x sin {§' — (11'/4)}

[”] »-: A2 )G Ao [ M] sin ;

g i — A=K (@) (6 )x cos s {5 - (-.rr/4)}
WhBl‘B s deﬁnad as in (31), and
- H(g) A(o) /‘(O‘n) sin'/2 (b(U'e)
H(aru) Ao 1/‘(o’) sin*/? q’)(cr)

_ The frequency is somiewhat ]:ugher than in Case {I)
modal displacemeénts are wholly inextensional, and the stresslike
. quantxties are almost enmrely denved from the bending soiusmns.

D“’(ao)e‘” =
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n ate = cru. A_mong the possx— L
ble édge conditions this is the freest except for the free edge of Case: =
(I). " The analysis gtrongly resembles: that of Case (I), and we
Only oné frequeney is found mf

7] a1 s
Tigg . .

| (32)

D (-:r Yei. -

The :

; Tn neither
case can we caleulate the frequency diréetiy but, in both cases,

‘We see that Cases (I) and ‘(II)are quite similaf.
we have very good knowledge of the mode.’

the mode into accurate information about the frequency. This

is exactly what Rayleigh did for spherical domes and cylinders, " .

and’ we shall derive general formulas for domes. with the’ edge

conditions: of these two eases in' the section, “Apphcatlons of - -

Rayleigh’s Principle.” :
Case {Il}: ns = Nse = w = mg = Oatod = o"@

Thls is the freest_

o ‘of the refnaining boundary conditions. The analysis proceeds as .. :
. in Cage (I} except that {25) is replaced by

Blc(a) + Bgs(a} —|— Bw(ﬁ) -]— B:rwm = 0

: After ehmmatmg Bl, the ma.tnx equatlon of the system is -

(X3 -+ A1X0)

. e : S : ..
(AKX + Xui) Bs =0
(ﬂgA_IXm +_A.—X34} . BT: ’ A : : Lo _. .

o X
127187 AXe

2_1/,_: _'_A_lez
where : S S .
U Mela) @@y L
Xa= =g Xe = —ET Kum wtsed

L 'cs)s(aj- SR ﬁs,;t“)s.{a) '

D S Yy = T S8

and the remaining X's are deﬁned ag in Case (I} Wé_ find for _
the frequency . - .

. X
DA~ - sz; Z o

Xm(laa - Xza) + XlS(X22 - Xm)

and affer some reduct.mn _ o
I e ) —'.Mn PTRRAE b IR T
. 2 = —1/s Laptns fﬂsa .

Q s OZIIIA /2 a4 05111{ E't"e(a'o)}

' The frequency is now h:gher by a fa.ctor of roughly € s thin m' -

Case (I1). The modeis . _ :
" Nu(n(g-), R

Cow= vm(t}')

: www(n{g‘) X("OSf,
bs ~ A(o’)x 08 {f + (11'/4)}

" by be”’(tr) MX ©cos f

o mseﬁ —-A(o’}M(i — v)x cos {§' + (’ri'/fL)} -
C g, —A‘*(o')x sin {j’ -%- (7r/4)} _ . - (34)°
R "‘-’A2(0)stm§’. -
[nas] = ._.A-_l.(a‘.)Gr;(.O—.)x [f] gn{¢ -+ (11'/4;)}
Tigp o M
-+ A- Yo {50)F, (m,)z—’/e R :
- =5 (G-) . ﬂ'sa(g) (U)] s
>.<. {Lﬁ [ﬁsﬂ +1a [nxﬂ(ﬂ)(d’j s

SO

née._"i ~Gx cos o
where - : ST : -
= {H(o)/H(a0)} w® (a0}

T M = g™
.5. nw_(g)nsﬁ‘_:m - nsﬂ(ﬂ)nsa(s) o=
| fra® = Mr, ]
Lo e = @, D @ o
_ i Dy g —m 5 n, O ﬂﬂ :

Transactmns uf tha ASME
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However, if we use.
Rayleigh’s principle, we can translate accurate information about -



W arhiere

_ - This mode dlﬁers from those in the two precedmg cases in two

* .. importint ways, ~ First, the Jisplacements sre’ no. longer com-

" pletely inextensional, for the bending solutions ' make a contribu-

Second, ‘the effect of the membrane -
‘- “solution is not now completely neghglble butis felt in the formula.s

S -_-for the direct stresses.: -

“ tion. o i near the edge.

- Case {IV): ey = Nsa = gy = D = 0 at g = a'@
" be-
A

frig® — Mp,®

8 .'cxivz = 2% ['men( (ﬂ)n e”‘) —n e(ﬂ)n ”"I}] .=ﬂu
_:- and the mode ls . |
Yip Nw(n(g) + X sin {_i' = (’-'i'/4=)} S .
G i, )
e b ~ —A(J)XSm 3'; _ S S|
B R "“’ba"’(tf) + xsm {§ — (/)
] cson [t - e
e el . mse:EA(o*)Mx(l - v)sm ¢
":-'."éaé.—Aa(O')Xcos §',;_._ L

LA L ~Aﬂ<cr>Mxeos{§-—(ar/4)}
[r]=-srem LIt

+ A‘I(a'u)w('”(o“[.)G (cra 2"“/2 '

o . nss (Cl') . y :n'sstﬂ) | : Jo
. '. X {Ls l: (5)(0-}] +L [naﬂ{n)]} e

.Referrmg 0. the formu!as (30) and {32), for the modes in the two _'

S me o G (O')X sin {?"”’ (7"/4)}

x= zvz{H(cr)/Hcaa)} e;wm(%)

This frequency s.nd mode are quahtamvely much hke those: m'_.' :
. -We see from (85) and (83)-that the frequency esti- -
~mate in the; present case is Earger than in Case (III) by 3 s:mple.j

“Case AII);

factor 2%

. The edge condltmns con51dered in Cases (I){IV} all have. -
N = Ny = 0ata = oy ie,; " the edges of the shell have been:
" free to move in directions tangent to the middle surface, We have -

+now exhsusted all the cages with this property. I we work out

- similar analyses for Case (V)i mye =8 = Qi=m, =0atc =ay .
. and Case (V1) u. = Ny =, =my; = Oatoc = o we see tha.t_'
- " natural frequencies in the range 2 < O(A -1) ‘caninot oceur; L.e., .

" for th%e edge condjtions all the natura.l frequencues obey

Qe > 0(1)

. But all the remaining edge cond1t10ns are obtamed from (V) or.

{VI} by “tightening”’ some “of the eonditions: Hence, in all the
Temaining cases, the natural frequencies are at least as high as in

can we find na.tm"al frequendies in the Tange

@S0

“Now; it is asy’ to ses from the motion eq’uatidns that inexten-

sional salutzons, i.e., solutions havmg the property that

ELE gy nee; ' CTIRS < 0{7\“1)

' a.ud all other qua,nf,ltses are 0(1), eannot oecur When Q2 > 0(1)

' __: Jdur_nal"- _at' Appiied Mechamss :

The a.naiysm is
. .the same in- this cisé as in Case (III) with an obvious change i
- the last bounda.ry condition. The natural frequency is found to 3
L e ) sa‘msfymg the edge conditiors on dlsplacements

(35)-

: ; EB =)\_4(1—V2)_1f‘m {

s _ 'Where*- =
Cases (V) or {VI}.  We conclude that ‘only for Cases (I}(IV) ) ’

. preclably t0 the mtegral

" Herice, for a dome; inextensional modes and frequencies can oceur - & - o

only in Cases (I)-(IV), ie.; only when the edge is free to move -
tangentrally :

Apptlcatmns uf Raylelgh's Prmcmla

Tn this section we shall ses how est].mates of the mextenszonal- Lo
frequencles ean be obtamed for the Ca.ses (I) and (II) by usmg -
'-'Raylelgh’s principle '

- Rayleigh’s principle states that for any. ﬁeld of dlspla.cements .

Q< QEE = (B EB)/K

where Ea, Bz a.nd Ka are to be’ calculated from the given field of '.
displacements by means of {13).
frequency, {5, depends on {and is usually miich better than) the -

aeceuracy of the assumeéd displacerment field. . We must’ emphasize

{(becaise it is occasionally overlooked) the effect-of the edge con- .

" ditions-on the displacements. - If these edge conditions are not
-1 gatisfied by the chosen displacement field, 3y may differ wﬂdly
: _from 2 and rieed ot even be the larger of the two.: ) :

" Tn applying Rayleigh’s principle to Cases (1) and (II), we shail :

= take as the trial dlsplaeements the approximate modes given for _. i
3 these cases by our prewous analysm. From (13}, (4), and’ (5), wa
have R Lo

T o : . .0'0. I : L s
LBy (1' - !’2)-_2*‘[ ; {nsf + ﬂae = 2V?’ﬁ gy :

+ 2(1 ¥ v)nss }re sin- ¢dff @9

+ mﬂe o 2szsm86
o

B -i— 2(1 + v)mm«,?} rg sin qucr (39).

K f (u2 + v’ -]— wz)rg sin ¢d6 .

cases, we see that two kinds of ‘terms occur; namely, ferms of

* inextensional and’ edge—effect types. The integrals of the inex-
 tensional terms are. of the same order.as the terms themselves :
" and cannot be evaluated explicitly until the shell shape i is speci-
fied. - The integrals of-the edge—e{fect terms. are smaller by an DR

order of magnitude than the terms themselves: and can be évali-
ated - explicitly (though approximately) by use of the Leaplace. .
method for asymptotic approximation of defiriite integrals. '
Tor example, in Case {IL), (38) and (32) lead:to - .~

-

.' N go e T
B ~0—- vz)“zf s g si_n q‘;do’-
Lo cJ0 : .

= f @i (cr)x’(tr rafa)sin qs(a)G 2(cr)1

X cos2 [i‘ (11'/4)]!16__"

=~ f ﬂ(r:')ﬂ'z;‘l{t‘f) sin ¢(0)A2(6)LD“’{G )}?}

>< e-i' 0052 [_i' — (rr/4)§d0' -

- Ao = H(a)A(a)/'tH(&o)A(&m

) The functlon ezf has the valae umty for o= oy and decreases”
rapidly to zero as ¢ -decreases: fromi. g

Hence this integral is of -
Laplage type; i.e., only the region near ¢ = o contributes ap-.
We may therefore approxmmte it by

{A ?‘rg_l[Dm]zsmtb ,u(l/Q)f 25’(1 + sin 2§)d0' :
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The accuracy of the estimated - "




SRR The integral i this i axpression can be evalua‘ted a.pproxumately- ST
B _-._'mththe a,ld of (Sl)togwe .

: : [A ¥y —I[Dm]’ sin Cf)} ‘cm(zlf”/S)
- _'We know tha,t o= O(X-ﬂ), hence

. Aloy) = ?\rs /2(cra)
. _:Thus, ﬁna!ly, we ﬁnd o ST
- B~ (1/8»\-312749{%)1 ‘f=[Dm<ao)]2 sin ¢ (cru)
_' In a sumlar manner EB may be estlma.ted

By~ (3/8)7\‘3[21"3(%)] v 2[D"’(Cfa)}2 sin ¢ {0'0)

" Hence for Ca,se (II)

A3[ra 0}/ 21 /LD ()] sin ¢ ) .

g M
-.__QEf K.

" where

KU):I L] {[um(ﬁ}}z + [ (7).'((.]-.).]'2:'_# [w(-,)(o_)]z}rﬂ Slnédo’ ;
G0 - : R

Applymg the same a,na.lysm in Ca.se {I), we ﬁnd B . ..:
B, - e(?\--s) eV E

Cay

o Fig. 1

ol— N PR I SRR
60° - - T |207_?";ﬁ-'_

. ; = :7) 5 : !nexlenssonn[ frequenc:es oS funcllons -of edge angle;’ qbu, for ﬂ'le .
-EI? 5 + 0 (h ) R edse conduhun gy = Ngg = 03 =b= 0from equuhon (44) N :
UERm = )\_4.f . :{[m-ﬁm]z + [maﬂm]n___ B, gyt SREIEE R e |
o IR - i 2(1 + r))[msé(n]ﬂ}fﬂ-siq ¢do— :: 3 — T . - .. .. L
: Hence We obtam ’she estnnate S g [ T I FE N » 1
;9 2~F3(73/K(7) 00\ 4) (42)-. e Tdmes L BN EEE
o We see that in thlS caso the esumate glven by Ra.yielg’ﬂ’s prmmple:_ o \ L \"“‘-———_.__h_ R
can. be derived: solely fromi -the inextensional - displacements. . N U O AR R e Lk
This is hot true-of the estimata Just obtamed in Case (I1); nor is-:. B - \ T :
it true of the Rayleigh estimates thiat: are ‘ohtained for the in-:. . " mep Tl
_ .__-extensmnal frequenczes in"Cases {I1I) anid’ (IV):  Equation (42)" S 2 = ST P
"+ is-of -course just the’ est1mat,e that Ragleigh used to find the'in- = - !
~extensional frequencies for s sphberieal dome. However;. nelther_
'Raylelgh Ror. any: subsequent investigator 'seems to have been ..
. ‘sure-of thé: conditions under which the sstimate iz aceurdte. " We
R now see that it s accu:rate onIy when the edge of the dome is _
et 8¢ RO

| -'!nextensmnal !-'requenmes fﬂf a Spherlcal Dume

¢ .. Tn thig section we'cairy out the calcilation of the ¥wo, lowest_:
< . inextensional freqiiencies for a spherical dome under the edge'condi: *. -
* “tions of Cases (I1) and (III), using formulas (41) and (33}, respec—

tively.

- () has

CE = 0 =

. at o=
: sin ¢ tan <¢/2), mze

B = (o + eon ) tain @
D@ = fsin $ = mlm | cos'$) ese ¢} tan™ (q5/2)

and the kinétlc energy is gtven by (recali tha,t qbo is the edge angl.e').-

'K(;I)_. :%ﬁ K'(.i;be;, m) = f tan‘?.m (¢/2){2 sin? ¢
: + (i —I— cos ¢)2} sin ¢‘i¢

o Case (II) equa.tlon {41) 1eduees {o.

522 / S'EP_TEMB_ER .‘1968' :

For & spherlcal dome ‘Lhe mexbensmnal solutlon that is ﬁmte g2 =

{43}'

_ and (33) reduces to .

. '_..."01111 : 2f!/~(1 e VB)(m + 08 ‘ibu)2 o8¢ ¢o tan™ (¢'u/2) (45):__-_.. ..Z:. 2

lnexfensnonql frequencles as funchons nf edge ungle, qbg, for ﬂie' .

Fig. 2
,9 =w= mss = Ofram equulmn (46)

edge conditien s =

- K(d’a, )S’_“ qsa ans= (¢3/2){sin o
- _m(m+ cosf.ba) esc ¢u}

: _F;g T shOWS graphs of *:,he reia,tmns betweeu QE and qSo for i’ — 2 o
-and 3; obdained from (44). C

. In' Case (ITT) the frequency is glven by (33) To evaluate this.~

“for g sphers,. we observe first that the- membra,ne solutmn ﬁmte ; _: :
-ab d; = @ has (see Tiove [4]} . ] :

. .. . nﬁ(s) = w5

2

1.+ o

Transantmns uf the ASME' i




" Tofind S R R
’ ) 2 = nea(_ﬂ) _i_nsﬂ(m-_

we must solve the system of équations obtained fiom the motion

equations, (7)-(9), by setting ¢ = 0 and taking for %, v, and w the"

inextensicna.l displacements (43)‘ The governing equation is

r,b +(m+2cosqb)csc¢z

i '—(1 - wz){u('” + PO w“)(m + cos d)) cse qﬁ}.
and 8 partleular solution (Whlch is a]l we need) is

) = (1 = »)E (B, m) sin™? gy tan~s ($o/2).
; Combining’ thls W1th (45) and (33), we find. " -

: ’/"‘(m - "cos ¢hy)? sin qbo tanim (ng/Z)
' 22K (gby, m).

Q a8

The frequenmes predlcted by (46) when m = 2 a,nd 3 are shown in

Flg 2

The 1nextensmnal frequencles in Case (IV) are 21/ * {imes those .
. . ... domes, it ought to: work equally well Tor shells with two edges.

. _ However, 1t remsains always subject to the condltmn that m2e X« 1 )

of Case (I11).

Dlscussmn

-+ 'We may make the fol!cwmg comments about the results of the-

. precedmg secmons

.- classical shell theory. (see’ Kalnins [9], for example), it seems not
"o have been done before.”
. proximate, but the results aré reassuring,

{ii} The observation ‘that inextensional modes can be found-.

'_ ‘for & dome only when the edge is free’to move tangentially is
similar to a conelusion reached by Arnold and Warburton [5] for

. . & oylinder.

“(iii) The e;nalyms shows t.hat Raylelgh’s procedure (1 e.; using
“the static inextensional solution. as trial displacements in. Ray-

leigh’s wariational pnnelple) works for’ a dome only when the -
“For cases (F1)~(IV) the inextensiconal displacements
-~ do: not satisfy- the edge conditions required by the variational -
- principle.
.‘alone can work only when the modal energy of bending greatly .
- exceeds that of stretehing, a condltlon which the true modes do
- * not satisfy in cases (II)-(IV). :
. iv) Recently, Hyang [10] descnbed dlfﬁculmes in calculatmg' :
“the inextensional frequencies from the general solution for-a frée- .
The difficulty took the form of severe accu—
" racy loss in computing the frequency determinant. The writer has

- edge'is free.

Alternatively,” using-the inextensional displacements

edged hemisphere.

commented elsewhere ‘on “this. difficulty [11], but-hete we add

" that it may be partly related to the canceflation of the leading

- bending terms for ri,; and n. ir Cases (I) and (I1).. ‘A sufficiently

- aceurate solution would be free of this difficulty and, evidently, .

Our' derlvamon is of course only ap--

* Vibrations of Shells

.the calculatmns descr;bed by Ka,hnns [9] were suceessful in thls TR

case, ° :
(v) The inextensional frequencles are acutely sensitive to the :
edge conditions. - ¥For example, if k/R = 1/30, the lowest inex- . .

‘tensional frequency in Case (IV) may be larger than in Case (I}

by a factor like 20-40. Conceivably this sensitivity could be
useful for experimentally determ.lmng what the edge conditions.
actualiy are.

(vi) We have not consxdered bounde,ry condxtlons of ela,stlc" )
constraint at the edge. - In genersl, we may expect. that these will - -

prnduce frequencies lying between those associated with the two
“pure!’ edge conditions that are combined to give the elastic cori- .

" dition. For example, the lowest natural frequency assomated with -
‘the boundary (‘ondltmn P

n = Na iu' - b, + @ —-g)D

' .Where 0 < E < 1 should sa,msfy

. aIIIA- i/2 < Q < (IIVA""I/’

Although we' have chosen to demonstra,te th.Is prccedure for

'References

1" Lord ReyleIgh, The Tkeo?‘y of Sound, 2nd ed., VoI I, Dover? s

' ' o .'thtnsN York; 1944.
- (i) Although it ha,s been customary t6 assume. that mexten. - p fi N

- sional modes of ‘vibation could, in general’ be: derived from &~

2. Goodier, J. N., and MeIvor, T. K., “The Elastic Cylindrical °

Shell Under Nearly Umform Radial Irnpulse JOURNAL OoF APPLIED.

MeoEANIos, Vol. 81, No. 2, Trans. ASME, Vol 86 SenesE June

1964, pp. 259-266,

3. Forsberg, K.,

of Aeronautics.and Astronautics Journal, Vol. 2, 1964, pp. 2150-2157, -
4. Love, A. E. I,

5- Arnold, R. N and Warburton, G. B.,

Proceedings of the Royal Society, London Senes A, Vol. 197,
1949, pp. 238-256.. . .

6- Ross, E, W., Jri-* Appromm&tmns in Nonsymmetr.ic She]l.

Vibrations,” \U 8. Army Materizls. Research. Ageney Report No. . - '

TR 67-09, Apr. 1967, submltted to Jourmzl of the Acoustical Sacwty af
Ameriea. \

7 Sanders J' L “A.n Impff)ved Flrst.-Approx:matmn Theory-
for Thin Shells,” NASA Report 24; 1959, 77 o

"8 ‘Ross, B. W, Jr. “Asymptotle A,nalysm of the Ax.lsymmetne
JOUBN’A.L oF ArrLIED MECHANICS, Vol 33,
Né: 1, Traws. ABME, Vol 88, Series E, Mar. 1966, pp. 85-92.

-9 Kalnins, A,, Discussion of “Some Expenments o the: Vﬂ)ra,-' S
“tiontof a Hemlsphencal Shell,” JourNAL oF ArPrLipD MBCHANICS,

Vol: 34, No. 3 TRANS. ASME Vol. 89, SerlesE Sept 1967, pp 792-
793

10 Hwang C., “Some Expenments on. the Vlbra,tlous of a Heémi-
spherical Shell,” JOURNAL oF ArrLiep MEcHANICS, Vol. 33, No. 4'
TRANE ABME, Vol. 88, Beries E, Dec. 1966, pp. 817-824 .

11 "Ross, E. 'W,, Jr “On Membprane Trequencies for Spherical -
Shell Vihrations,” Amerwan Institute of Aeronauiics and Astromutws'-_
Journal Vol. 6, No. & Ma.y 1968 pp 803-808". :

o -Reprinted from the Sej)témber 1908
Journal of Applied Mechanics. .

Journal of Applied Meshanics

SEPTEMBER - 1968./ 823

) “Inﬂuence of Bounda.ry Condmons on - the S
Modal Characteristics of Thin Cylindrical Shells,” Américan Tnstituts

A Treatise on the Mathematlcal Théory of -

- Elasticity,” 4th ed., Dover Publications, New York, 1944,
. "Flexural Vlbratlons of S
" ‘the Walls ‘of Thin Cyhndrical Shells - Havmg Freely Supported:
‘Ends,”




